Holomorphic Extensions of Laplacians and Their Determinants

نویسنده

  • YOUNG-HEON KIM
چکیده

The Teichmüller space Teich(S) of a surface S in genus g > 1 is a totally real submanifold of the quasifuchsian space QF(S). We show that the determinant of the Laplacian det′(∆) on Teich(S) has a unique holomorphic extension to QF(S). To realize this holomorphic extension as the determinant of differential operators on S, we introduce a holomorphic family {∆μ,ν} of elliptic second order differential operators on S whose parameter space is the space of pairs of Beltrami differentials on S and which naturally extends the Laplace operators of hyperbolic metrics on S. We study the determinant of this family {∆μ,ν} and show how this family realizes the holomorphic extension of det ′(∆) as its determinant.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Holomorphic Extensions of Determinants of Laplacians

The Teichmüller space Teich(S) of a surface S in genus g > 1 is a real submanifold of the quasifuchsian space QF(S). We show that the determinant of the Laplacian det′(∆) on Teich(S) has a unique holomorphic extension to QF(S).

متن کامل

Tau-functions on spaces of holomorphic differentials over Riemann surfaces and determinants of Laplacians in flat metrics with conic singularities

The main goal of this paper is to compute (up to a moduli-independent constant factor) determinants of Laplacians in flat metrics with conic singularities on compact Riemann surfaces. We consider two classes of metrics: the Ströbel metrics and metrics given by modulus square of a holomorphic differential. For the latter case, if all conic angles equal 4π, our formulas essentially coincide with ...

متن کامل

Tau-functions on spaces of holomorphic differentials over Riemann surfaces and determinants of Laplacians in flat metrics with conic singularities over Riemann surfaces

The main goal of this paper is to compute (up to a moduli-independent constant factor) determinants of Laplacians in flat metrics with conic singularities on compact Riemann surfaces. We consider two classes of metrics: the Ströbel metrics and metrics given by moduli square of a holomorphic differential. For the latter case, if all conic angles equal 4π, our formulas essentially coincide with h...

متن کامل

Tau-functions on spaces of Abelian and quadratic differentials and determinants of Laplacians in Strebel metrics of finite volume

2 Tau-function on spaces of Abelian differentials over Riemann surfaces 7 2.1 Spaces of holomorphic differentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Variational formulas on Hg(k1, . . . , kM ) . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3 Basic Beltrami differentials for Hg(k1, . . . , kM ) . . . . . . . . . . . . . . . . . . . . . . 11 2.4 Definition of...

متن کامل

Holomorphic Factorization of Determinants of Laplacians Using Quasi-fuchsian Uniformization

For a quasi-Fuchsian group Γ with ordinary set Ω, and ∆n the Laplacian on n-differentials on Γ\Ω, we define a notion of a Bers dual basis φ1, . . . , φ2d for ker∆n. We prove that det∆n/det〈φj , φk〉, is, up to an anomaly computed by Takhtajan and the second author in [TT03a], the modulus squared of a holomorphic function F (n), where F (n) is a quasi-Fuchsian analogue of the Selberg zeta Z(n). T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005